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SHAPE DESIGN SENSITIVITY ANALYSIS BASED ON BOUNDARY 
INTEGRAL EQUATION METHOD CONSIDERING GENERAL 

SHAPE VARIATIONS 

P A R T  II : FOR POTENTIAL,  ELASTICITY A N D  PLATE B E N D I N G  P R O B L E M S  
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This work is based upon the general formula for the shape design sensitivity of the elliptical operator. "]'he classical engineering 
problems of potential, elasticity, and plate bending will be addressed. The derived formulas are suitable for computational purposes 
in conjunction with the boundary element method. Specific individual problems serve as illustration and their results are compared 
with those obtained by a different approach which is based on a variational method over the domain. 
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1. INTRODUCTION 

A formula for the sensitivity of functionals expressed in 
domain and boundary integrals has been derived for general 
elliptic opertor equations, based upon a boundary integral 
equation formulation. (Kwak, 1987a) Because the formula is 
written in general terms, considerable manipulation is neces- 
sary to obtain concrete formulas for specific application 
problems. The purpose of this paper is thus to present special- 
ized concrete expressions of sensitivity as applied to typical 
elliptical engineering problems such as potential, elasticity 
and plate bending problems. In regard to elasticity, the 
axisymmetric problem will be considered here, because the 
plane elasticity problem has already been discussed with 
some specific examples of a fillet and an elastic ring problem. 
(Kwak, 1987b) Most of the following derivations involve 
operations in material  derivatives and integration by parts. 
(Zolesio, 1981). 

2. POTENTIAL PROBLEM 

Consider a potential u defined on an arbi t rary domain ~2 
as shown in Fig. 1. For simplicity, the derivation is restricted 
to two-dimensional problems. The formal boundary value 
problem for u can be wri t ten by the Laplacian operator ,  
order 2 m = 2, 

A u = - V 2 u = f ( x ) ,  x~,.Q, (1) 
u ~ b ,  

x ~ a-Oo,/ (2) 
x~a~2,,J 

~u 
p(u) - - ~ = c ,  

whrere f ,  b and c are the prescribed functions, and P(u)  is 
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the flux of u on the boundary. The boundary operators B0 
and Co appearing in Kwak's  general formulation (Kwak, 
1987a) are represented here by 1 and a/an. The correspond- 
ing integral identity is 

;,,~{ up (w ) - p ( u) w } ds = f ~ ( f w - g u )  dx, (3) 

where w is an arbi t rary potential satisfying (1) with f 
replaced by g. A general functional for this problem is now 
written as 

~)=fQh(u, V u)dx+faogY{U, P(u)}ds.  

Noting that 

(4) 

f~hvu" V fzdx= faD(hru'n) ~2ds-f~(div h~,~) it dx, (5) 

where h v~ denototes the partial  derivative with respect to 
V u, the material  derivative of q) becomes 

# ' =  f ~ ( h u - d i v  hru) iz dx + fa~{ ( gfu+ heu" n) ~t 
+ gYp#}ds-f~{huV u" V+he~"  V (V u" V)}dx  

+faQ{(h+ grH) Vn+ gYVs.s}ds. 

(6) 

X2 

Fig. I Potential problem 

Xl 
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where V~ is the tangential component of the velocity field V. 
For  a two dimensional case, the vector Vr defined by Kwak 
(Kwak, 1987a) becomes simply Vss, where s denotes the unit 
tangential vector on 0~2. Note in (4) that the function h 
contains another argument V u, which was not considered in 
the general procedure (Kwak, 1987a). However, as noted by 
Kwak (Kwak, 1987a), using relation (5), the material  deriva- 
tive of 7 u has been eliminated, resulting in expression (6). 

In order to relate u a n d / i  in (6) with the velocity field V, 
the material  derivative of identity (3) is taken, noting the 
following identity. 

p(w) =p(w ' )  +#, . (w) V.+p,(w) V,-w,sV.,, (7) 

utilizing (12) and (13), one finally obtains the desired sensi- 
tivity formula for �9 as 

~'----- f,a[{h + ~rH + f u * -  u,~u',s+ P( l )* -  hw," n 
+ u ' H )  } V,,+ {(u , .  (p* -- hv~," n) - P , s u * )  Vs 

+ ~Vs,s}]ds+faao(  ~ u +  heu" n - t ) * )  b d s+ fom 
( ~rp+ u s) r ds. (14) 

A membrane deflection problem is taken for illustration as  a 
specific case. Consider the membrane shown in Fig. 2, with 
uniform tension of unit value, and art applied lateral  load, f .  
Under the condition that the deflection u is zero on the 
boundary, the formal boundary value problem is 

Therefore, the operators ~o and ~'0 in the general sensitivity 
formula in Kwak (Kwak, 1987a), are identified as follows : 

Bo( V)= V . ~ - +  v ~ 7  s , 

~2 02 V"'s-a ~ to(v) = v.~-+ v~T~-- (8) 

The next manipulation is to take the material  derivative of 
(3) and to substitute (7) into the resulting expression. The 
following indentities are also used : 

p.,,(w) + P(w) H +w,~s =- V2w = - g ,  (9) 

and f oa{UlD(W' ) - ] ) (u )w ' }ds= fa ( fw ' -g ' u )dx  (10) 

Using (7), (9) and (10), and after  some simplifications,  
one obtains the expression for the variation of (3), 

fagu dx + fea{P(w) U-Wlb ( u) } ds =fag V u" V dx 
+ f ea[{ fw-  u,sw, s+ P(u)  (p(w) + w H )  } Wn 
+ {u.sp(w) - -p . , (u)  w} Vs]ds. ( l i )  

- V a u = f  in ~ ,  
u = 0  on 3~.. (15) 

Consider a functional that represents strain energy of the 
membrane, 

0 : - -~ f~v  U ~ V U (IX. (16) 

1 
Then, h and ~" in (4) become -~-V u �9 7 u and zero. Noting 

from (12) and (13) that the adjoint variable u" is identical to 
u, the sensitivity formula (14) becomes simply 

a ) , _ l r  {auV  
- -V-" \~7]  v. as. (17) 

The same result is obtained, using a variat ional  formulation, 
specifically applicable to domain integrals only. (Choi, 1983) 

3. AXISYMMETRIC ELASTICITY 
PROBLEM 

To relate (11) with (6), introduce an adjoint system such that 

f * = h u - d i v  h v .  in .Q, (12) 

u *= - '~p on &Qo, (13) 
p*= ~ % + h w , ' n  on 0%2~. 

Substituting u* and f* in place of w and g in (11) and 

Treatment  of an axisymmetric elasticity problem differs 
from the usual procedure described earlier, in that it involves 
vector functions in (r, z) coordinates. However, the general 
principle is the same as that for problems of potential. 

Consider a linear elasticity problem for an axisymmetric 
body &~ with smooth boundary, 092, as shown in Fig. 3. For  a 
cylindrical coordinate system with point x denoted by (r, z), 
the boundary integral equation can be written as 

U 

/J 
X 1 

X 2 

, f  

Fig. 2 Membrane deflection with uniform tension Fig. 3 Axisymmetric elasticity problem 
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au ,  (xo) + fao {u .  (x) F, ,  (x. xo) - T ,  (x) G. ,  (x. Xo) }rds 
{1. Xor 

= f a f , ( x ) G , ~ ( x .  xo) r dx. with = 1 
~ ,  Xor 

(18) 

where ds and dx denote the line element of the boundary (~12 
and area element of the domain 12 at point x, respectively. 
The tensor notations are used here with indices representing 
either direction r or z. The kernal functions G,~ (x, Xo) and 
F, ,  (x, x0) are the displacements and the tractions, respective- 
ly, in the direcion k at x, due to a unit ring load in the i-th 
direction applied at x0. The detailed expressions can be found 
in "Banerjee, 1981". The function, f , ,  appearing in the domain 
integral denotes rotational body forces, such as centrifugal 
loading. Let the boundary conditions be written as follows 

u ~ =  bi on 312o. (19) 
T. = c. on ~12~. 

a, (w) = E e l +  v (a~+ a,), (24) 

where E and v are the material constants, ar and az are the 
stresses in r and z direction, respectively, and ~ ,=  u~/r  is 
the hoop strain. 

To relate zk~ and 7~ (u) in (22) and (23) with V, an adjoint 
system is now defined such that 

f * i  = h ~  in ~ ,  (25) 
u*~=-- grri on 3~o, 

(26) 
T ' i =  ~u~ on 0 ~ .  

Substituting f%, u*i and T*~ in place of g~, w~ and T, (w) in 
(23), the sensitivity formula for q~ becomes 

qY= faa[{ ( h+  ~'H + f i u * , -  u,.sS*, + T~( u*~.. + u*,H) ) r 
+ ( ~ '+ T , u % ) n r -  u~a,} V ~ + { ( ( u , . ~ T * , -  T,.~u*,) r 
- grnz) Vs+ grrVs, s]ds+f~ao( ~ u , -  T*,)  rb~ (Is 
+faro( Vr i  + U'i) r~ , ds. (27) 

where b~ and c~ are the prescribed displacements and trac- 
tions, respectively. Substituting (19) into (18) and solving the 
resulting integral equations, the unknown terms on the 
boundary are determined. 

As in the potential problem, introducing an arbitrary sys- 
tem of displacements w~ with body forces gl, the foregoing 
BIE can be transformed to the following integral identity 

f ~ { u i T i ( w ) - t ~ ( u ) w , } r  d s = f ~ ( f ~ w , - g , u l ) r  dx. (20) 

This result corresponds to Betti's reciprocal theorem for two 
arbitrary equilibrium states with u ,  f~ and w~, gl in only in 
an axisymmetric body. This equation differs from the plane 
elasticity case that the radius r appears in the integrals of 
(20). 

Consider a general functional for axisymmetric elasticity 
problems in the following form : 

Note here that S~, ae and u,,, can expressed by a combina- 
tion of u ,  2",. and their tangential derivatives : 

S i =  "C~i + ~sSl, 
ae = Eeo + v (an + as), 

. 1  1 = [~-u{ (1-  v )  a .  - v a . }  - r e , ]  n ,  + (~-r-  Uh,snk)  Ui,n Si, 

(28) 

where p is the shear modulus, and a,, r and as are the stress 
components in (n, s) coordinate, which are given by 

an = Tknk, 
T :  r~sk, 

Gs =12~F ( U.,sS . + l]Se) -~ '1~(Yn .  

(2) =fQh(ui )  r dx+faa ~" (Ui, Ti) r ds, (21) 

Note here that r has to be included, such that it is consistent 
with the BIE formulation. The material derivative of q~ is 
obtained, 

qY = fa hu, ir dx + f ~ {  Wu, i,, + ~rr~ J'i}r ds 
- f ~  hu. r V  u," V dx+faa[{ (h+ ~ H )  I1. 
+ Vr ~ ( n r V . - n z V s ) ] d s ,  (22) 

where nr and nz denote the components of the unit normal on 
012. 

Following the general procedure, the material derivative of 

the identity (20) is introduced to define a suitable adjoint 
system. 

fa g,r~2, dx + f~a{ T i (w)  ~2~-wi7",( u) }r ds 
=fa  g , r V  u," V dx+faa[{ ( f~w, -  u~,sS,(w) + T~(u) 
(w~.n+wiH) ) r -  u,~o(w) + T , ( u ) w , n r }  V,  
+ { u,,s T, (w) - T,.s (u) w,} 1I,] ds, (2a) 

where [Si (w) = ais(w) s~] is the tangential component of the 
stress tensor on a12. a0 (w) is the stress in the hoop direction, 
which is given by the stress-strain relation for axisymmetric 
c a s e  : 

4. P L A T E  B E N D I N G  P R O B L E M  

Consider the problem of finding lateral deflection u of a 
plate with unit thickness as shown in Fig. 4. The equilibrium 
equation is given by the biharmonic operator where 2m = 4 as 
follows (Timoshenko, 1959). 

u 

Fig. 4 Plate bending problem 

X2 

M 
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A u ( x )  =AZu(x)  = l f ( x ) ,  xt.Q, (29) 

where D is the bending stiffness given by E / ( 1 -  v*), A is the 
Laplacian operator,  and f ( x )  is the applied surface load. The 
boundary conditions are 

_ O u _  
u = b o  on 3~2o, p ( u ) = - f f ~ - - b ,  on 8~2~, 

M (u) = Co, on ~22, N (u) = c~ on 3~2s, (30) 

where 3~2o U 8~2s :: &O~ U 3~z = 8_0. The boundary opera- 
tors Bo, B~, Co and C~ become in this case 1, 8/8n,  M and N.  
M and N,  operators which relate the displacement u to the 
bending moment and equivalent shear force on the boundary 
are defined as : 

M (U) = m,s ( u )  n~nj, 
N (u) = Q ( u ) -  T,s(u),  

(31) 
(32) 

The operators m~, T, & Q are defined by the following : 

m~(  u) = D { ( 1 -  v) u,~ + vS~u.**}, 
T ( u )  = mi~ ( u )  n~s~, 
Q(u)  = -- m,~,j(u) n,. 

(33) 
(34) 
(35) 

with the assumption of smoothness on the boundary, a pair of 
BIE's are obtained as follows (Banerjee, 1981), 

1 B ,  u +  fa~{uN (G,) + p ( u )  M (G,) - M ( u ) p ( G , )  

- N ( u )  G,} d s : f a f G i  dx, 
xe 8~2, i=0 ,  1, (36) 

where the arguments of u and G~ have been omitted for 
simplicity. Go and G~ denote fundamental solutions with 
order 0 and 1, respectively. The corresponding integral iden- 
tity becomes 

faa{ u N  (w) ~ p(  u) M (w) - M ( u) p (w)  - N ( u) w} ds 
= f a ( f w - g u )  dx, (37) 

1 
where w is an arbi t rary function satisfying z/2w = - ~ g .  

Consider now, for the plate bending problem the general 
functional, 

�9 =Y~h(u ,  m ~ ) d x + J ~ V  (u ,P ,  M, N )  ds. (38) 

Take  the material  derivative of q), and note that 

fn h=,, m,j(  i~) dx= fan{N~ M~ + M~ V~,s 
- V~H)} ds+fQm~ ,~ft dx, 

where rn~ = D{ (1 - v) h=.+ vS,sh=.} 

and M ~ and N ~ are given by Eqs. (31) - (35). 
Then, the material  derivative of q~ becomes 

(39) 

(40) 

r  m~ it dx +faa{( ~ u +  N ~ ~2+ ( ~'p 
+ M ~ 15 + r + ~'NA r } d s - f o { h ~  V u.  V 
+ hm,jm,'.~ ( V u" V )  } dx + f a o {  ( h +  ~ H )  V .  
+ r176 V~, . -  V~H)} ds. 

(41) 

As before, the next step is to obtain the-material derivative 
of the identity (37). After taking variations of (37), use the 
following relations, 

(w) = P (w') + w.~ V~ + p., (w) V , -  w.~ V~.,, 

M ( w )  = M  (w') + (rn~5, ~(w) nm~) V~+M.~(w) V s - 2 T  
(w) V~,~ 

N ( w ) = N ( w  ') - (m~ j , j~ (w)n , . )  V~+Q.s(w)  V~+D 
(dw),~ V~,~- { (m,~,~ (w) n~sj) V~ + T,~ (w) V~ 
+ ( M ( w ) - S ( w )  V~,8},~+ T , ~ ( w ) ( V , , H  
+ Vs,D, (42) 

where S,  Eq. (43) denotes the transverse bending moment on 
0t2. 

S = rni~S,S~, (43) 

The expressions for the operators Bo, g~, r0 and ~q(Kwak, 
1987a) are included on the righthand side of Eq. (42). After 
rather lengthy manipulation with various derivatives, the 
expression for sensitivity of �9 is finally obtained : 

q)'= faa{[h + ~'H + f u  * + u , s ( M ' -  M~ + p{ (N* 
- N  ~ - (M* - M ~ H } - m i ~ u * . ~ + , d u ( M * -  M ~ 
+ M ~ u * + M ,  s u * . , + N ( p * +  u * H ) ]  V n + [ u . , ( N *  
- N ~ 1 7 6  u * ] V ~  
+ grVs.s} ds+fa~o( ~ + N ~  N*)/~o ds+fam(grp  
+ M ~  *) tJ~ ds + fa~2( ?]TM-[-P*) Co ds+ fao3( ~N 
+ u ~ ~ ds, (44) 

where the adjoint system is defined such that 

f*  = h~ + m~ in ~2, (45) 
u* = - {V N on 9~2o, p* = - r on 9~2 ~ 
M *= gY~+M ~ on 8.02, N * =  gru+N ~ on 8~2~ (46) 

A plate bending problem under the clamped boundary condi- 
tions, i,e., u=0 ,  p = 0  on 3Q, is used for specialization of the 
derived formula. A compliance functional for the plate is 
considered : 

t9 = f~ f u  dx. (47) 

Noting from (45) and (46) that the adjoint variable u* is 
identical to u, the lengthy sensitivity Eq. (44) becomes simply 

# ' =  fao{-- misu,ls+ 2zJuM} V. cls. (48) 

Because the tangential derivatives of u and p are zero on 0~2, 
Eq. (48) is further simplified to 

q)' = Dfa~ (u,~) 2 V, ds. (49) 

The same reulst is obtained, when a variational approach is 
used (Choi, 1983). 

5. CONCLUSION AND DISCUSSIONS 

Based upon previously derived general formulas, concrete 
formulas for shape sensitivity related to the three typical 
engineering problems of potential, axisymmetric elasticity 
and plate bending design are derived. These formulas are 
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specific enough for computational purposes. The calculation 
of these formulas is dependent upon the primary BIE only in 
the prescribed data on the boundary and domain, the same 
BEM equations with different input data can be used. Numer- 
ical implementations of the formulas are being studied as 
well as the treatment of discontinuities in boundaries and 
those related functions. 
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